Vector space — This article is about linear (vector) spaces. For the structure in incidence geometry, see Linear space (geometry). Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is… … Wikipedia
vector space — noun a) A type of set of vectors that satisfies a specific group of constraints. A vector space is a set of vectors which can be linearly combined. b) A set V, whose elements are called vectors , together with a binary operation + forming a… … Wiktionary
Basis (linear algebra) — Basis vector redirects here. For basis vector in the context of crystals, see crystal structure. For a more general concept in physics, see frame of reference. In linear algebra, a basis is a set of linearly independent vectors that, in a linear… … Wikipedia
Orientation (vector space) — See also: orientation (geometry) The left handed orientation is shown on the left, and the right handed on the right. In mathematics, orientation is a notion that in two dimensions allows one to say when a cycle goes around clockwise or… … Wikipedia
Dimension (vector space) — In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V. It is sometimes called Hamel dimension or algebraic dimension to distinguish it from other types of dimension. This description… … Wikipedia
Symplectic vector space — In mathematics, a symplectic vector space is a vector space V equipped with a nondegenerate, skew symmetric, bilinear form omega; called the symplectic form. Explicitly, a symplectic form is a bilinear form omega; : V times; V rarr; R which is *… … Wikipedia
Normed vector space — In mathematics, with 2 or 3 dimensional vectors with real valued entries, the idea of the length of a vector is intuitive and can easily be extended to any real vector space Rn. The following properties of vector length are crucial. 1. The zero… … Wikipedia
Super vector space — In mathematics, a super vector space is another name for a Z2 graded vector space, that is, a vector space over a field K with a given decomposition:V=V 0oplus V 1.The study of super vector spaces and their generalizations is sometimes called… … Wikipedia
Frame of a vector space — This article is about a generalization of bases to linearly dependent sets of vectors. For a linearly independent set of vectors, see k frame. In linear algebra, a frame of a vector space V with an inner product can be seen as a generalization of … Wikipedia
Quaternionic vector space — A left (or right) quaternionic vector space is a left (or right) H module where H denotes the noncommutative ring of the quaternions.The space H n of n tuples of quaternions is both a left and right H module using the componentwise left and right … Wikipedia
Basis (universal algebra) — Definitions The basis (or reference frame) of a (universal) algebra is a function b that takes some algebra elements as values b(i) and satisfies either one of the following two equivalent conditions. Here, the set of all b(i) is called basis set … Wikipedia